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Abstract
We used the random-fuse model to compute the topological features of
localized cracks in an annular two-dimensional geometry. Depending on
the type of disorder in the resistivity of the fuses, the results follow the
observations encountered in the literature for square lattices with periodic
boundary conditions or have a different behaviour explained by a small disorder
in the resistivities. Finally, finite-size effects play an important role in this type
of geometry.

Fracture has been widely studied since 1980 [1, 2]. One model for analysing numerically
cracks on brittle fracture is the random-fuse model (RFM) [3]. Fuses are placed on a lattice
and an electrical potential difference is applied to them (or equally, a given current is injected
at some location). Depending on the resistance threshold of the fuses, some burn out and
become insulators while some do not.

The RFM is, in two dimensions, an exact recasting of the mechanical problem of constraint
application on a material as an electrical problem with a given electrical potential difference [1].
It has also been used in three dimensions [4] and the results compared to two-dimensional ones.
This model allows one to compute the behaviour of fracture from a topological point of view. It
corresponds to a quasi-static phenomenon and may be investigated in a deterministic manner.

We will consider here the special case of the RFM where some disorder has been applied
to the fuse resistances. Depending on this random distribution, the burned-out fuses are either
localized on a crack or spread all over the numerical material.

All RFMs in the literature used cubic (square in two dimensions) lattices with periodic
boundary conditions [1, 3, 4].

We will here impose an annular geometry on our boundaries on a triangular lattice; i.e. the
triangular lattice will be bounded by two circles of different radii.

Depending on the disorder in the resistivity of the fuses, this type of geometry leads
to results known generally from the literature for 2D cubic lattices with periodic boundary
conditions or to different results which are less frequently encountered in the literature.
The differences from cubic lattices here are the finite-size scale of the geometry and the
geometry itself.
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The model is a RFM on a triangular lattice with the nearest-neighbouring sites connected
by bonds, taken to be electrical fuses with identical resistance but whose burn-out thresholds
are disordered.

The boundaries of our triangular lattice are an outer circle of radius Rout and an inner
circle of radius Rin. A fuse conducts until the current that it carries, i, exceeds the burn-out
(breaking) threshold ic, at which point it becomes irreversibly an insulator. We apply a constant
potential difference between the circle Rin (potential V = 1) and the circle Rout (potential
V = 0). The equations to be solved are the usual current equations (Kirchhoff’s equations)
on the lattice, which can be easily solved using the conjugate-gradient method [5].

The breaking thresholds were assigned by generating random numbers uniformly distrib-
uted on the unit interval and raising them to a power D. This corresponds to a cumulative
probability distribution P(ic) = i

1/|D|
c when D > 0 and P(ic) = 1 − i

−1/|D|
c when D < 0.

The smaller the value of |D|, the smaller the disorder. The two-dimensional fuse model was
shown to exhibit distinct classes of fracture behaviour according to the value of D [6]. For
small values of |D|, a macroscopic crack starts developing early in the fracture process, while
when |D| is large, a cloud of disconnected micro-cracks (blown fuses) develops before they
coalesce into a final macroscopic crack.

We took a constant value for Rout , namely Rout = 40, and seven different values for Rin,
namely Rin = 5, 10, 15, 20, 25, 30, 35. Our stopping condition is for the residual current to
be less than 10−13. We also used two values for D: 0.3 and −0.3, for which the fracture is
known to be localized. To analyse the effect of the value of D on the results, we also used
D = 0.5 and D = −0.5 to compare with the previous values for the same Rout , but only for
Rin = 5, 10, 20. Finally, for each set of values Rin, Rout and D, we averaged the results over
20 different realizations.

The fractures were isolated on our crack images by using an image analyser program.
Once the cracks were isolated, we computed the number of pixels of the cracks which is
proportional to the number of micro-cracks (which do not overlap). From the coordinates of
each micro-crack composing the fracture, we calculated the characteristic topological features
of the crack. For an example of fracture, see figure 1.

Figure 1. An example of fracture for Rout = 40, Rin = 20 and D = −0.3. The scale has been
multiplied by two for better visibility
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It has been observed in the literature on the RFM that the crack lengths in square lattices
scale with the typical dimension of the lattice R. For example, in three dimensions, the crack
length � follows a power law � = Rα where α = 2.13 for low disorder and α = 2.7 for high
disorder [7].

In our case and for D = 0.3 or D = −0.3, we found that

� = Rβ (1)

with β = 0.85 ± 0.005. We can say that the length of the fracture is approximatively
proportional to the outer radius Rout (see figure 2(a) and figure 2(b)), while for the values
of D = 0.5 and D = −0.5, the scaling law is

� = Rδ (2)

with δ = 1.12 ± 0.015. We can say in this case that, as for three-dimensional systems,
systems with D = 0.3, −0.3 are low-disorder systems and systems with D = 0.5, −0.5 are
high-disorder systems.

Another characteristic is the Hurst exponent H or roughness exponent of the fracture. It
is defined by

C(r) = 2(〈[h(r0)]
2〉 − 〈h(r0)〉2) = 2σ 2 ∝ �2H (3)

where C(r) is the autocorrelation function of the height of the crack (i.e. the distance from the
centre of the disk) h(r0) with respect to the average fracture location and σ is the crack width.
Another way to compute the Hurst exponent is to find the difference between the maximum
distance of the crack from the centre of the circles and the minimum one. This leads to a
power law in this difference versus the size of the inner circle whose exponent is also the Hurst
exponent. And, finally, the third way to compute the Hurst exponent is to take the average of
the two eigenvalues of the moment-of-inertia tensor of the fracture. Here again, this leads to
a power behaviour whose exponent is the Hurst exponent.

The results for H in the case of D = −0.3 are H = 0.7 ± 0.05 for the three different
computation methods. For D = 0.3, H = 0.6±0.07, also for the three computation methods.
We show these results in figure 3(a) and figure 3(b), the Hurst exponent being deduced from
the slope in a log–log plot.

In the cases of D = 0.5 and D = −0.5, what is interesting, and what seems inconsistent
with the uniqueness of the value of δ, is the two values of H that we find here. For a disorder D

equal to −0.5, we have an average value of H = 0.43±0.02, while for a disorder equal to 0.5,
H = 0.74±0.02. We stress that we used the same metrics to compute H as for D = 0.3, −0.3.
The apparent contradiction between H and the length (�) scaling factor may be explained if
one looks at the disorder. For D = −0.5 the crack expands without any contribution from
micro-cracks. The resulting fracture is then smoother than for the case of disorder D = 0.5.
In this latter case, micro-cracks are added to the fracture and thus increase the roughness of the
fracture. So the length � of the crack can be the same on average for the two types of disorder,
while at very small scales the roughness for D = 0.5 is double that for D = −0.5.

The type of disorder in the resistivity of the fuses plays an important role, which is linked to
the finite-size effects. Indeed, for D = 0.3, −0.3, the results follow the same rules as for two-
dimensional computation for the RFM on square lattices with periodic boundary conditions;
i.e. the Hurst exponent is only slightly different for the two cases of disorder. In contrast, we
may say that for the case of disorder D = 0.5, the fracture is entirely disorder driven—i.e.,
that the roughness of the fracture arises essentially from the randomly distributed micro-cracks
which appear in the neighbourhood of the macroscopic crack—while for disorder D = −0.5,
the fracture shows a roughness which may be compared to that of small-scale fractures. The
value of H for D = 0.5 may be compared to the theoretical value of 2/3 for the roughness
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Figure 2. (a) A log–log plot of the length of the fracture versus the outer radius for D = 0.3. The
slope 0.85 has been computed by means of a power regression, excluding the last point for which
the finite-size effects are too large. (b) A log–log plot of the length of the fracture versus the outer
radius for D = −0.3. Here again, in the power regression used to compute the slope of 0.85, the
last point has been excluded.

exponent in two dimensions (as for D = 0.3, −0.3), while for the value H = 0.43 ± 0.02 for
D = −0.5 we have to recall a result obtained by Schmittbuhl and Vilotte [8]: they constructed
a model which simulates a front constraint to move in a plane with small disorder. In this
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Figure 3. (a) The case of disorder D = 0.3. The Hurst coefficient (equal to 0.6) has been computed
by constructing a power regression on this log–log plot of (i) the standard deviation of the crack,
(ii) the average of the two eigenvalues of the moment-of-inertia tensor and (iii) the difference
between the maximum distance to the centre of the circles and the minimum distance. (b) The case
of disorder D = −0.3. The same methods have been used as for (a). Here, the Hurst coefficient is
equal to 0.7.
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case, the prediction for the Hurst exponent is of order 1/3. Another hypothesis is that for the
value D = 0.5 we observe pseudo-brittle fracture (i.e. a more gradual fracture process of the
material) as described in the article of Sahimi and Goddard [9]. Indeed, they used the same
random disorder for the distribution of the current threshold as for the fuses (but produced
mechanically). We observed, as they do, many cracks spread all over the system and not
belonging to the percolating fracture. Moreover, in a square lattice with periodic boundary
conditions, these micro-cracks do not appear as numerous as here, with the same D. This may
explain the different value of the Hurst exponent for this type of disorder. We have to say
finally that, when Rin = 35, i.e. is very close to Rout = 40, the finite-size effects are large and
the power laws observed for the other values of Rin are no longer valid.

As a conclusion to this letter, we may say that geometry plays an important role in the
behaviour of the fracture, as well as the random distribution of the current threshold of the fuses
in the RFM. We recover the same results as for square lattices for small disorders, i.e. brittle
fracture behaviour. But, due to the confined geometry, on increasing the disorder the behaviour
becomes closer to pseudo-brittle fracture, while for square lattices the fracture behaviour
remains brittle for all values of the disorder exponent |D| < 1. So, what is important is that
even for numerical models such as the RFM, which compute brittle fractures, the behaviour
of the crack topological features is not universal for confined geometries.
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